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Abstract

While health affects many economic outcomes, its dynamics are still poorly un-

derstood. We use k-means clustering, a machine learning technique, and data from

the Health and Retirement Study to identify health types during middle and old age.

We identify five health types: the vigorous resilient, the fair-health resilient, the fair-

health vulnerable, the frail resilient, and the frail vulnerable. They are characterized

by different starting health and health and mortality trajectories. Our five health types

account for 84% of the variation in health trajectories and are not explained by observ-

able characteristics, such as age, marital status, education, gender, race, health-related

behaviors, and health insurance status, but rather, by one’s past health dynamics. We

also show that health types are important drivers of health and mortality heterogeneity

and dynamics. Our results underscore the importance of better understanding health

type formation and of modeling it appropriately to properly evaluate the effects of

health on people’s decisions and the implications of policy reforms.
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1 Introduction

While health affects many economic outcomes (including future health, disability, labor

supply, earnings, retirement, nursing home entry, savings, and death), its dynamics are still

poorly understood. This paper aims at better understanding health dynamics during middle

and old age using data from the Health and Retirement Study (HRS), which is a U.S. panel

data set covering people aged 51 and older. We use these data to document how health

and mortality evolve, how unequal is their evolution, and how to better model the dynamics

of health and mortality. We show that people belong to different health types, that these

health types have an important influence on one’s future health and mortality dynamics, and

that ignoring the existence of these health types leads to an important mis-characterization

of future health dynamics and mortality.

To achieve these goals, we organize our analysis around five questions. The first question

is whether, during middle and old age, there are “health types”, that is, whether people have

heterogeneous health trajectories. The second question is what those health types look like.

The third question is whether, by the time one reaches middle age, health types can mostly

be captured by observables, or whether health types mainly reflect unobserved heterogeneity.

The fourth question is how important are health types in driving health dynamics and what

we miss by ignoring them, specifically when modeling health as function of previous period’s

health and other commonly used observables. Our fifth question is whether we can capture

health dynamics by modeling them as just a function of health, health types, and age,

and abstract from other commonly used observables such as gender, marital status, and

education.

To start our analysis, we adopt a parsimonious measure of health that has been proposed

by the gerontology literature. The frailty index (or “frailty”) uses numerous responses about

specific impairments (ability to get in and out of bed, feed oneself, use the phone, read a

map,...) and conditions (diabetes, cancer, obesity, high blood pressure...) and computes,

for each person over time, the proportion of “deficits” as a fraction of the potential ones
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considered. It is thus a number between zero and one that varies for each person over time,

depending on how that person’s underlying deficits evolve. Frailty has been shown to be a

good predictor of future health and mortality, but also of many other economic outcomes,

including by race, gender, and ethnicity (See for instance Hosseini, Kopecky, and Zhao (2022)

and Russo, McGee, De Nardi, Borella, and Abram (2024)).

The HRS collects data every other year. We select people age 52-53 and we follow them

until 2018, or until they die, whichever comes first. In this age group, death is primarily

a manifestation of health (the HRS “exit interviews,” show that only 4% of those in our

sample die for causes “unrelated to health”). For this reason, when people die, we attribute

them a frailty of one (its maximum possible value) from that time on, and keep them in our

health trajectories.

We extract health types by using people’s realized health trajectories and k-means clus-

tering. We do so by dividing our sample period in two parts: a clustering period that goes

from age 52 to 60, and a validation period which goes from age 62 to 74. That is, we extract

health types using k-means during our clustering period, and we then validate our health

types during the remaining future period by testing whether the health types that we extract

before age 60 have predictive power for the health and mortality dynamics for those alive

after age 60. Not using all available history for each person allows us to avoid over-fitting

when we test for the predictive power of our health types.

Clustering assigns observations (in our case a health trajectory between age 52 and 60)

to groups (clusters) or health types so that the trajectories of health within a given health

type are as close as possible, while those across health types are as different as possible.

This method provides the important advantages of providing a direct and intuitive map-

ping between health types and people, and of being non-parametric, and thus not requiring

making any functional form assumptions, including about the sources of heterogeneity being

observable and unobservable. Within many possible clustering methods, we adopt k-means

clustering, which is the only clustering method for which the statistical properties of identify-
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ing unobserved heterogeneity from discrete classification have been determined (Bonhomme,

Lamadon, and Manresa (2022)).

K-means clustering requires specifying the number of clusters, or health types, K. We

select this number by using two sets of criteria. First, we study whether increasing K

improves our forecasts of frailty and mortality during our clustering period. Second, we

adopt typical machine learning criteria. Both set of criteria are consistent with five health

types. People of each health type tend to have similar initial health and health trajectories

during our clustering period, and our between types variation accounts for 84% of the total

variation across health types trajectories between the ages of 52 and 60.

We also evaluate our health types by evaluating its predictive power (out of sample) in

future health and mortality outcomes after age 60, and hence after our clustering period

ends, and show that our health types out-predict other potentially relevant observables.

More specifically, in a regression of future frailty on demographic characteristics, adding

health types to the regression increases the R2 from 0.120 to 0.571. In a similar regression

of future frailty on demographic characteristics and frailty and self-reported health at 52,

adding health types increases the R2 from 0.510 to 0.591. Health types are also statistically

significant in a logit regression of mortality on demographics, first period frailty, self-reported

health, and health types.

Taking together the extent to which health types explain variation of health and mortality

during and after our clustering period, our answer to Question 1 is thus that we find strong

evidence for health types, and in particular for five health types.

From this, we move onto our second question. What are these health types like and

how do they behave during middle and older ages? We find that individuals belonging to

our five health types have very heterogeneous health dynamics, both during and after our

clustering period. Looking at age 52 data only, one might conclude that there are only three

health types, which start out as “vigorous”, in “fair-health”, and “frail” and that they have

very heterogeneous starting health (2, 6, and 14 health deficits respectively). But looking
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over a longer horizon reveals that while those starting out vigorous are also resilient, that

is, they face slow health deterioration and are unlikely to die early, those in fair and frail

health then bifurcate into two groups each, the resilient ones who are unlikely to experience

fast health deterioration and die early, and the vulnerable ones, who instead experience fast

health deterioration and early death. A related important observation is that the fraction

of people dying for non “health-related” causes is small in all health types. Thus, those

who die fast during our sample period are not those having accidents, but rather, die due to

underlying health-related issues.

Therefore, our answer to Question 2 is that our health types can be characterized as the

“vigorous resilient” which comprises 57% of our sample, the “fair-health resilient,” which

accounts for 27% of our sample, the “fair-health vulnerable,” which are 3 % of our sample,

the “frail-resilient,” which makes up for 10% , and the “frail-vulnerable,” which are 3% .

Thus, 6% of our individuals experience very fast health deterioration during middle and

older ages. This fraction is similar to the 8% of the most vulnerable of three health types

estimated by De Nardi, Pashchenko, and Porapakkarm (2023), that studies the whole life

cycle and a different statistical model of types.

Next, we turn to our third question, that is to what extent are health types explained by

a rich set of observables, and to what extent they reflect, instead, unobserved heterogeneity

which can be identified using individual health trajectories. This is an important question be-

cause many models of health and mortality, including those used in many structural models,

allow for rich heterogeneity in marital status, gender, education or permanent income, and

so on, and find that health trajectories are, to some extent, explained by these observables.

But is this the most parsimonious and effective way to model health and mortality?

To address this question we start by simply characterizing the distribution of many key

observables by health types. This analysis does reveal several interesting findings. Women

are less likely to start at age 52 in the healthiest group, but are also less likely to deteri-

orate fast and die early. Black people are less likely to be healthy but do not necessarily
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deteriorate faster. People with higher education are more likely to belong to the “vigorous

resilient groups,” at age 52, but conditional on starting out from one of the other health

types, they are not less likely to deteriorate faster. People in couples are more likely to

be of types 1 and 2, but are similarly represented in types 3, 4, and 5. There is a clear

gradient in individual income, with individual income decreasing in frailty type, but not in

household income. Having ever smoked is increasing in frailty type and is more prevalent for

fast deteriorating health types. Private insurance is decreasing in frailty type, while public

insurance is increasing.

While this partial analysis reveals some interesting correlations, we also perform a more

systematic exercise to understand the relationship between health types and observables.

That is, we run a multinomial logistic regression of health types on one’s initial health and

a rich set of observables that include demographics, health behaviors, and health insurance

status. This part of the analysis answers Question 3: our rich set of observables has poor

explanatory power for health types (the pseudo-R2 is 0.131). Initial frailty alone has a

much higher explanatory power (its pseudo-R2 is 0.430). All of the observables that we

consider and initial frailty only generate a marginal improvement in the explanatory power

of health types (its pseudo-R2 is 0.448, compared to 0.430). Thus, we find that, at least once

one reaches middle age, health types mainly reflect unobserved heterogeneity and that just

modeling health types is a parsimonious way to capture health heterogeneity.

Question 4, in turn, asks how important health types are and what happens if we ig-

nore them while instead taking into account other commonly used variables such as gender,

marital status, education, and so on. This is important because many structural models of

health that incorporate health risk ignore health types but allow for these other sources of

heterogeneity. How much heterogeneity in health and mortality is this approach missing?

To address this point, we take our previously computed health types as given and use them

as an additional explanatory variable to study the evolution of a different measure: Self-

reported health status (SRHS) and death starting from age 52 until death or the end of our
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observation period.1 This measure has, at this stage, some important advantages. In fact, it

parsimoniously summarizes an individual’s perception of their own health, it is not mechan-

ically related to our frailty measure, and it has also been shown to be a good predictor of

many economic outcomes, including by race, gender, and ethnicity (See for instance Hosseini,

Kopecky, and Zhao (2022) and Russo, McGee, De Nardi, Borella, and Abram (2024)).

More specifically, we estimate a multinomial logit for SRHS and death as a function of

age, previous SRHS, marital status, and education, all interacted with gender. To this, we

add information on health types by allowing for a type-specific intercept. The first result from

this part of the analysis is that health types are important drivers of health and mortality

dynamics, even when we use a state-of-the-art first order Markov formulation. The second

result is that ignoring health types misses both the timing and heterogeneity in mortality

and the evolution of health conditional on being alive by health types, both during and after

our clustering period. Importantly, the model without health types predicts much more

mean reversion in health status by health type than is actually in the data.

Finally, we turn to our fifth question, that is, can we abstract from commonly used ob-

servables to explain health and death dynamics once we have health types, previous health,

and age as explanatory variables? We answer this question by comparing two multinomial

logit models of SRHS and mortality. One includes gender, education, and marital status,

in addition to previous SRHS. The other one only includes health types, age, and previous

SRHS. This part of the analysis reveals that the second parsimonious model outperforms

the first one (with a pseudo-R2 of 0.257 and 0.285, respectively), thus indicating that using

a much more parsimonious model of health and mortality with health types actually outper-

forms the model with a rich set of observables. This is important because it might indicate

that we should want to adopt this parsimonious specification, including in structural models,

and possibly save on explicitly modeling many state variables such as gender, education, and

being in a couple.

1Self-reported health status results from a question in which people are asked to self-report their health
as “excellent,” “very good,” “good,” “fair,” and “poor.”
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Our findings provide some important lessons and open up interesting and important

avenues for research. First, that health types are important to better understand health

inequality and, thus, potentially, the extent to which health inequality drives economic in-

equality. Second, that ignoring health types can generate misleading policy implications

both in terms of observed outcomes and welfare. For instance, the vulnerable adult types

who die fast would not draw much benefit from increases in Social Security benefits, given

their much shorter life spans.

Important questions that we leave unaddressed include the following. How long of a

history do we need to identify health types? This is important not only from an operational

stand point, but also because it might be related to how long a person needs to learn

their health type, based on their family background, and their own realized health history.

Related, by when do people learn their health type? To what extent do observed decisions

such as retirement, savings, and labor supply depend on health types? Then, what would

health types look earlier in life? And how do they relate to other key economic outcomes

that we care about, including education, marriage, fertility decisions, disability, length of

working life and retirement, and medical expenses? Finally, when and how are health types

formed? Much more work is needed to address these important issues.

Related literature. Our paper relates to three main branches of the literature: the

analysis of health heterogeneity and health inequality, the study of the effects of health risk

on various economic outcomes, and the research on health formation.

The extensive empirical literature on health inequality examines the relationship be-

tween health outcomes and various economic factors, such as socioeconomic status, educa-

tional attainment, marital status and gender, and health costs. Case and Deaton (2005)

use self-reported health status. Hosseini, Kopecky, and Zhao (2022) adopt the frailty index,

a measure proposed by the gerontology literature (Goggins et al. (2005); Mitnitski et al.

(2002, 2001, 2005); Searle et al. (2008)). Heiss (2011) studies models for health dynamics for

self-reported health status and mortality and suggest a joint model with an autocorrelated
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latent health component. Keeney et al. (2019) use observed health outcomes and medical

utilization to study the composition of the most costly Medicare beneficiaries (and hence

for people 65 and older). In this population they identify 5 phenotypes using latent class

analysis. Bueren, Amengual, and Josep (2024) use observed health outcomes and lifestyle

choices to identify latent types of lifestyle using Gaussian mixture models. They identify

2 lifestyle type and document significant difference in health outcomes driven by lifestyle

behavior. Our contribution to this literature is threefold: First, identify health types using

k-means clustering (Bonhomme, Lamadon, and Manresa, 2022), a tool previously used in

the labor and earnings inequality literature. Importantly, unlike previous latent class analy-

ses, our approach does not rely on parametric assumptions for extracting types. Second, we

show that health can be effectively represented by a small number of health types or health

trajectories. Third, we document that, in middle age, the effects of health types on health

dynamics are much larger than those of education, gender, and income.

Our paper also contributes to the structural literature examining the effects of health risk

on various economic outcomes, which typically assumes that health is exogenous and follows

a first-order Markov process. Older studies using self-reported health as a health measure

include French (2005), French and Jones (2011), French and Jones (2017), De Nardi, French,

and Jones (2010), and Kopecky and Koreshkova (2014). More recent studies use frailty,

for instance Hosseini, Kopecky, and Zhao (2021), Nygaard (2022), Hosseini, Kopecky, and

Zhao (2022), Russo (2022) and Russo, McGee, De Nardi, Borella, and Abram (2024). Our

contribution to this literature is to show that ignoring health-type heterogeneity when esti-

mating the evolution of health fails to capture important heterogeneity in health outcomes.

Specifically, these models generate insufficient persistence of health states and inadequate

heterogeneity in mortality risk, both of which are crucial for forming expectations about

future health and thus significantly impact economic decisions. Our findings align with

those of De Nardi, Pashchenko, and Porapakkarm (2023),Capatina and Keane (2023) and

Bueren, Amengual, and Josep (2024), that show that incorporating health types is essential
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for understanding the dynamics of health, as well as its inequality over the life cycle.

Finally, our paper provides facts relevant for health formation. Among previous work in

this context, Bolt (2021) shows that about one-third of health inequality can be explained

by health investments over the life cycle and that investments during early childhood have

a greater impact than those made during adulthood. Ozkan (2024) documents that high-

income families invest more in preventive care for their children, leading to lower curative

medical expenditures during adulthood and higher life expectancy. Mahler and Yum (2024)

and Cole, Kim, and Krueger (2019) examine the non-monetary aspects of health investment,

emphasizing how individuals can influence their health through “health effort” over the life

cycle.

Because our approach is non-parametric, any attempt to endogenously model health dy-

namics should generate patterns that are consistent with those that we document. Moreover,

it provides insights on how health investments relate to health types in in middle and old

age.

2 Data and frailty

We use data from the University of Michigan Health and Retirement Study (HRS), a

longitudinal panel study designed to survey individuals aged 51 and older residing in the

United States, as well as their spouses. Initiated in 1992, it has been taking place every 2

years, and also collects data on many health measures. It is well known for its good sample

size and rigorous follow-up procedures, which result in a low attrition rate.

Because key variables such as difficulties with daily living first appear in the 1996 survey,

we use data from 1996 to 2018 (and hence for 12 interviews). As interviews take place every

two years, we group individuals ages in two-year bins.

We select people starting out in our data at age 52-53 and who are 60-61 or older by

2018. From now on, we index these age groups by the lowest age in the group (52 refers to
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52-53). Because we use the first five interviews for each person to identify health types and

the remaining interviews to validate them, the choice of our sampling period ensures that

we have enough interviews for each respondents to perform our identification and validation

analysis. Our sample includes 4663 individuals. Appendix A contain detailed information

about our sample selection.

2.1 How do we measure health?

Health is an unobserved and potentially multidimensional object. Measuring it presents

a challenge on its own. We follow the gerontology literature (Mitnitski, Mogilner, and

Rockwood (2001)) and measure health by the frailty index (or frailty), which tracks health

deterioration by taking into account that, as people age, they accumulate more health deficits,

such as difficulty with activities of daily living, functional limitations, and medical diagnoses.

Frailty is defined as the fraction of deficits present for an individual at a certain age over

the total number of deficits considered. We follow Russo, McGee, De Nardi, Borella, and

Abram (2024) and construct our frailty measure using their proposed 35 underlining deficits.

For exposition purposes, Table 1 groups these health deficits into difficulties with Activities

of Daily Living (ADLs), difficulties with instrumental activities of daily living (IADLs), other

functional limitations, diagnoses by medical professionals, indicators of health care utilization

and addictive diseases.2 These health deficits are recorded as being either present, and thus

equal to 1, or not.

Frailty thus weights all deficits equally. One might wonder whether this is a good choice

because some deficits might indicate a more severe health impairment than another. Yet,

previous literature that adopts principal components to construct a deficit-specific weighted

health measure, shows that this measure does not outperform frailty (Hosseini, Kopecky, and

Zhao (2022); Russo, McGee, De Nardi, Borella, and Abram (2024)) in terms of predictive

2We follow the medical literature in classifying obesity and smoking as diseases. The American Medical
Association recognized obesity as a chronic disease in 2013. Many papers in medical literature, including for
instance Bernstein and Toll (2019), also consider smoking to be a chronic disease
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ability for economic outcomes. While this might seem surprising, there is a substantial degree

of comorbidity among deficits, which we also document. That is, people in poor health are

unlikely to have just one very severe deficit. Instead, they quickly develop several of them.

Moreover, when we analyze the determinants of health types, we find that one’s health type

is primarily driven by one’s level of frailty, rather than by one’s frailty composition.

Table 1: Health deficits. Each deficit takes the value of 0 if the respondent reports not
having it, or of 1 if the respondent reports having it.

Deficit Deficit

ADLs Difficulty lifting a weight heavier than 10 lbs
Difficulty bathing Difficulty lifting arms over the shoulders
Difficulty dressing Difficulty picking up a dime
Difficulty eating Difficulty pulling/pushing large objects
Difficulty getting in/out of bed Difficulty sitting for two hours
Difficulty using the toilet
Difficulty walking across a room Diagnoses
Difficulty walking one block Diagnosed with high blood pressure
Difficulty walking several block Diagnosed with diabetes

Diagnosed with cancer
IADLs Diagnosed with lung disease
Difficulty grocery shopping Diagnosed with heart condition
Difficulty making phone calls Diagnosed with a stroke
Difficulty managing money Diagnosed with psychological or psychiatric problems
Difficulty preparing a hot meal Diagnosed with arthritis
Difficulty taking medication
Difficulty using a map Healthcare Utilization

Has stayed in the hospital in the previous two years
Other Functional Limitations Has stayed in a nursing home in the previous two years
Difficulty climbing a one flight of stairs
Difficulty climbing several flights of stairs Addictive Diseases
Difficulty getting up from a chair Has BMI larger than 30
Difficulty kneeling or crouching Has ever smoked cigarettes

2.2 Death as an expression of one’s health

Because we want to understand health and mortality dynamics, and because death is

a manifestation of one’s health and health type, we assign a frailty index of one to those

who die, where one is the maximum value that frailty can take if a person has all possible

possible deficits. To investigate the implications of this assumption we explore the frailty

distribution among living individuals, the distribution of frailty changes across two successive

periods depending on how far one is from death, and the causes of people’s death.
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Figure 1: Distribution of changes in frailty while alive, in the period preceding death, and
in the period right before death
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Table 10 in Appendix B illustrates that, among the living, the highest frailty level ob-

served is 0.91 and that 98% of observations have frailty levels below 0.6. Thus, people do

not attain a frailty score of 1 while alive.

Figure 1 shows that the average change in frailty over two consecutive waves (a two-year

period) for living individuals is 0.01 (equivalent to 0.45 health deficits). In contrast, the

average change in frailty during the two-year period immediately preceding death is 0.06

(1.99 health deficits), indicating a faster health deterioration as individuals approach death.

For individuals who and thus transition to a frailty score of 1, the average change in frailty

is 0.66 (23.1 health deficits). This highlights that the health decline associated with death

is significantly larger than the changes observed during life.

Finally, we investigate the causes of death for those who die during our sampling period.

Table 11 in appendix B shows that 5.3% and 12.9% die during our clustering period and by

2018, respectively. Among those with known causes of death, 7.2% and 4.4%, respectively,

succumbed to non-health-related factors. This suggests that the majority of deaths were

attributable to health-related issues. Furthermore, we observe similar health-related causes
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of death for those who died prematurely and those who die later on.

3 Uncovering health types

To identify health types, we apply k-means clustering to health trajectories between ages

52 and 60. Here, hi represents the health trajectory for individual i, yielding a vector with

five realizations of frailty, fit.

hi = [fi,52, fi,54, fi,56, fi,58, fi,60] (1)

For a given number of health types or clusters (k̄), the k-means algorithm generates

representative health trajectories and assigns each individual to a specific cluster. The k-

means method requires specifying the number of clusters (K), which we determine using

two approaches. First, we apply standard machine learning methods, including the elbow

method (Thorndike, 1953) and silhouette analysis (Rousseeuw, 1987). Second, we adopt an

economic criterion, selecting K such that adding more health types does not significantly

improve the predictive power of regression models for mortality and future frailty during the

clustering period.

We define the predictive power of health types for k̄ health types as P (k̄) = 1 − a(k̄)
a(1)

,

where a(k̄) is the mean absolute error of the regression model with k̄ health types. To

estimate P (k̄), and to avoid over-fitting, we use 10-fold cross-validation. Finally, we select

K so that there is no significant increase in the predictive power of health types when we

add an additional health type (K + 1). Following this procedure we choose 5 health types.

They explain 84% of the variation in health trajectories during the clustering period. Also,

5 health types are within the range suggested by traditional ML methods, which indicate 2

to 5 clusters. This finding is also robust to different specification in our models for frailty

and mortality. Appendix C contains detailed information about our procedure to choose K.

The use of k-means to approximate individual heterogeneity with a finite number of
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groups is justified when using multiple measurements per individual (Bonhomme, Lamadon,

and Manresa (2022)). We use the histories of individuals as different measures. This allows

us to reduce miss-classification error and to reliably approximate heterogeneity.3 Moreover,

our goal is not to identify group fixed effects and make a decomposition exercise. Instead, we

aim at assigning each individual to a health type that represents a specific health trajectory.

Unlike traditional methods for identifying latent classes, we do not impose any functional

form assumptions during the type extraction stage.

While k-means is one of many dimension-reduction methods in the statistical literature,

in addition to its formal justification to approximate individual heterogeneity, we think k-

means provides an advantage in terms of ease of interpretation and simplicity, relative to

other methods, such as PCA, random forest, or Neural Networks. Relative to other more

classical methods, such as latent types analysis, or random effects, k-means can be seen

as the limiting problem when the group-specific probabilities are individual specific (e.g.

Bonhomme and Manresa (2015)).

3.1 Validating health types

To what extent do health types capture persistent and unobserved differences in health

outcomes? What do health types capture, and what are they useful for?

In this section we evaluate the extent to which health types are able to forecast future

health and mortality beyond age 60, that is, after the clustering period. Our main premise

is that if we are identifying persistent and unobserved differences in health outcomes, health

types should have explanatory power after age 60, when the clustering period ends. It is

important to note that this is a very different exercise from the one we use to help choose

the number of types, K. Here, we are trying to predict the future. In contrast, in the

determination of K we are trying to predict within the clustering period for the sample of

individuals that we do not not use for clustering.

3Other contexts in which k-means has been used in economics is to capture heterogeneity across firms
using the empirical distributions of log-wages in each firm (e.g. Bonhomme, Lamadon, and Manresa (2019)).
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To do so, for those individuals alive by the end of the clustering period, we compare the

forecasting performance of models for health and mortality with and without health types.

We have 3,340 individuals in our sample that satisfy these requirements (see Appendix A

for details). We use a linear regression model for frailty and a logistic regression model

for mortality and measure the predictive power of those models by the adjusted R2 and

the McFadden pseudo-R2 (hereafter referred to as pseudo-R2), respectively. Appendix D

contains detailed information about our model specification, sample, and estimates.

Table 2: Forecast performance of health types in future health and mortality

Future frailty Future mortality

Controls x x x x x x x x
Initial health x x x x
Health types x x x x

R2 0.119 0.571 0.510 0.591
Pseudo-R2 0.145 0.206 0.183 0.210

Notes: See Tables 12 and 13 in Appendix D for detailed information.

Table 2 shows that health types significantly improve the predictive power of future

health and mortality. Specifically, adding health types in a regression of future frailty on

demographic characteristics, the R2 increases from 0.119 to 0.571 (Columns 1 and 2). In a

similar regression of future frailty on demographic characteristics and frailty and self-reported

health at age 52, adding health types increases the R2 from 0.510 to 0.591 (Columns 3 and

4). When analyzing mortality we find similar patterns. Adding health types to our logistic

regression of mortality on demographic characteristics increases the pseudo-R2 from 0.145

to 0.206 (Columns 5 and 6). The improvement in predictive power is also present when

we consider a model that incorporates frailty and self-reported health at age 52, and the

pseudo-R2 increases from 0.183 to 0.210 (Columns 7 and 8).

Our analysis thus suggests that: i) demographic characteristics have relatively low pre-

dictive power for future health and mortality; ii) health types considerably increase this

predictive power; and iii) the predictive power of health types is still significant and sizable
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after controlling for frailty and self-reported health at age 52.

A natural question is to think whether health types are a trait or a state. Disentangling

high persistence from heterogeneity is well known to be a difficult question in longitudinal

dataset. Hence, our goal in this exercise is to use types to uncover additional ways to predict

future outcomes, without taking a stand on whether they are pure heterogeneity or the

accumulation of highly-persistent shocks. We leave this very important question for future

research.

4 What do those health types look like?

Because health types are established by clustering the data, each individual’s health type

is defined by the proximity of their realized health path between ages 52 and 60 to the average

health path within that cluster. We order the five health types defined by the clustering

according to the average frailty between ages 52 and 60 of the centroid of each cluster. Type

5 has the highest average frailty, and Type 1 has the lowest.

Health type 1 includes 57% of the sample and has an average frailty of 0.06 (and 2.1

health deficits) during our clustering period. Health type 2 comprises 27% of the sample

and has an average frailty of 0.2 (and 6.9 health deficits). Health types 3 and 4 constitute

3% and 10% of the sample, respectively, and have average frailties of 0.44 (and 15.3 health

deficits). Lastly, health type 5 accounts for 3% of the sample and has an average frailty of

0.77 (and 27.1 health deficits).

4.1 Health dynamics by health type

Figure 2 illustrates three key health outcomes by health type: (a) mean frailty, (b)

fraction of people alive, and (c) mean frailty conditional on survival. They reveal large

heterogeneity in health trajectories by health type, both during and after the clustering

period.
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Figure 2: Health dynamics by health type and age
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(c) Mean frailty of the survivors

Notes: Red dashed line: end of clustering period

Health at age 52 is very unequally distributed by health type. On average, type 1 has

a frailty of 0.05 (1.8 deficits), while types 2 and 3 have frailty levels of 0.17 and 0.15,

respectively (5.9 and 5.3 deficits). Health types 4 and 5 start at age 52 with frailty levels of

0.40 and 0.34, respectively (14 and 12 deficits). However, the speed of health deterioration

varies greatly among health types.

Health type 1 displays initial low frailty and experiences a slow health decline. Conversely,

while health types 2 and 3 start with similar frailty levels at age 52, their health trajectories
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diverge notably. Type 2 exhibits slow health deterioration, while type 3 undergoes a more

rapid decline with higher mortality rates. Similarly, types 4 and 5 begin with comparable

frailty levels, but their health evolution differs significantly. While type 4 maintains relatively

high frailty levels, type 5 demonstrates rapid health deterioration and higher mortality.

These results underscore the importance of our methodology. First, clustering based on

trajectories rather than other measures, such as mean frailty, offers significant advantages.

For example, types 3 and 4 exhibit similar average frailty (0.44), yet their trajectories differ

significantly. Second, incorporating the time dimension is crucial. While health types 2 and

3, and 4 and 5 appear similar at age 52, their health trajectories prove to be very different.

Health outcomes after the clustering period are very heterogeneous. While health types

3 and 5 suffer from severe health deterioration during the clustering period and most of them

die by the age of 60, types 1, 2, and 4 also face very different frailty dynamics and mortality

patterns afterward. Particularly, individuals in type 4 die faster than those in health types

1 and 2, with type 2 also experiencing higher mortality than type 1.

A legitimate concern is whether health dynamics of health types 3 and 5 are mostly

driven by people who die by age 60. Panel (c) depicts the mean frailty by health types for

those who are alive, evidencing the acute health deterioration of types 3 and 5, even among

survivors, while health types 1, 2, and 4 show a steady and slow deterioration.

Figure 3 displays the histories of each individual’s frailty by health type and age during

the clustering period. Darker trajectories refer a higher level of frailty and black trajectories

represent death. These graphs highlight both the differences in initial frailty at age 52 and

the degree of individual’s level health deterioration. Type 1 starts out with low frailty and

remains quite healthy during the clustering period. Types 2 and 4 start out with higher frailty

(more so for type 4 than for type 2) and also see their frailty increase slowly. Types 3 and

5 have more heterogeneous frailty at age 52 than those of types 1, 2, and 4, and experience

faster and larger health deterioration, with trajectories moving from light grey to darker grey,

culminating in the majority of these individuals dying by age 60. The heterogeneity in these
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health trajectories can be due to several factors, some of which might not be measurable using

our data. For instance, individuals may differ in genetic endowments, family background,

pollution, access to high-quality health care, eating and exercise habits, and so on.

Figures 12 and 13 in Appendix E refer to versions of the previous graphs in which we

choose 4 and 6 health types, respectively, instead of 5. These figures highlight there is re-

markable consistency in the behavior of health types when the number of types increases or

decreases around our chosen number of types. While most health types display similar dy-

namics to those in our base case, a second vulnerable (that is with high health deterioration)

type emerges when moving from 4 to 5 types, and an additional resilient (that is with slow

health deterioration) type, yet with poorer health, appears when going from 5 to 6 health

types. This consistency is not something that the k-means method imposes as we change

the number of types, yet it emerges from the data very clearly.

Figures 14 and 15 in Appendix F report the analogous pictures of Figure 2 when we

increase the length of our clustering period to age 62 and 64, respectively. They show that

both the size of our types and their behaviour before and after the clustering period are

remarkably similar.

Finally, Table 3 presents the causes of death among those in our sample.4 We find that

cancer and heart conditions are primary causes, accounting for 61% of deaths, and that 35%

can be attributed to other health conditions. This aligns with the National Center for Health

Statistics report, which identifies heart disease and cancer as the top two leading causes of

death in the United States in 2018 (Xu, Murphy, Kochanek, and Arias (2020)). Only 4%

of our sample died from non-health-related reasons. Additionally, approximately half of the

deceased individuals (48%) were expected deaths (as reported by the respondent).

Breaking down the data by health types reveals relatively homogeneous distributions of

causes of death across them. For example, death due to cancer-related issues accounts for

4We use the HRS exit interview files. When a participant dies, a family member is interviewed about the
participant’s death and also asked about the cause of death and if death was expected/unexpected around
the time it occurred. About 90% of the people who die has this information available. The response rate for
the cause of death is similar across health types.
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Figure 3: Individual frailty dynamics by health type and age during clustering period
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Notes: Each row in the graphs represents an individual’s health trajectory during the clustering period.
Darker trajectories indicate higher levels of frailty, with black representing death.
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41% of deaths in health types 3 and 29% in health types 5 (most of them died during the

clustering period), slightly above and below the overall 35%. Similar patterns emerge for

causes of death related to heart issues and whether death was expected or not.

Table 3: Cause of death by health types and all sample

Death cause Death expected? Death

Cancer Heart Other health-related Non-health related Expected Unexpected during clustering period by 2018

Type 1 0.50 0.24 0.24 0.03 0.60 0.40 0.00 0.05
Type 2 0.35 0.30 0.33 0.03 0.49 0.51 0.00 0.10
Type 3 0.41 0.19 0.32 0.08 0.47 0.53 0.94 0.97
Type 4 0.16 0.27 0.55 0.01 0.38 0.62 0.00 0.19
Type 5 0.29 0.30 0.36 0.06 0.44 0.56 0.91 0.96

Overall 0.35 0.26 0.35 0.04 0.48 0.52 0.053 0.129

4.2 Health types and observable characteristics

Research in health dynamics has traditionally focused on analyzing health outcomes

conditional on observable characteristics. We deviate from this approach and identify typical

health trajectories. This section examines to what extent our health types correlate with

commonly used observable characteristics. Table 4 presents these relationships.

We first observe some gender disparities. Women have a lower likelihood of being in

good health; but their health tends to deteriorate at a slower pace compared to that of

men. Specifically, women are over-represented in health types 2 and 4, while men show a

relatively larger presence in health types 1, 3, and 5. These patterns are consistent with the

gender-specific health dynamics previously documented in the literature (Case and Deaton

(2005); De Nardi, French, Jones, and McGee (2024); Hosseini, Kopecky, and Zhao (2022))

Race is another factor related to health outcomes. Black individuals are less likely to

belong to the healthiest type and are relatively more likely to belong to the rapidly deterio-

rating health groups, such as health types 3 and 5.

As previous work, we find an educational attainment gradient by health types. Individ-

uals with more education are more likely to belong to the healthiest health type. However,
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this gradient is weaker for the remaining health types. For example, health types 2 and 3

exhibit similar educational achievement but have distinct health trajectories.

Furthermore, our analysis reveals that coupled individuals are more likely to belong to

the healthiest types (1 and 2) and experience lower health deterioration relative to single

individuals. These patterns are consistent with previous studies analyzing heterogeneity of

health dynamics and marital status (Borella, De Nardi, and Yang (2023); Braun, Kopecky,

and Koreshkova (2017); De Nardi, French, Jones, and McGee (2024))

In line with many previous studies, we identify a strong income gradient among health

types, where individuals with higher individual incomes are more likely to belong to the

healthiest types. Notably, this gradient is weaker when analyzing household income.

We also investigate the prevalence of health-related behaviors among health types. We

find that the proportion of individuals who have ever smoked increases in frailty type and

is particularly prevalent for health types 3 and 5, which are associated with faster health

deterioration. Notably, the fraction of individuals reporting vigorous physical activity at

age 52 decreases in frailty type, but is similar for slow and fast health deterioration types.

While both behaviors are considered forms of health investment, their differing impacts on

mortality challenge the state-of-art health investment model that assumes a uniform measure

of “health effort”. (Cole, Kim, and Krueger (2019); Mahler and Yum (2024)

Finally, we examine health insurance status at age 52 and find that while private insurance

decreases with frailty type, public insurance increases.

4.2.1 Predicting health types

We now turn to studying to what extent heterogeneity in observable characteristics at

age 52 explains who belongs to each health type. We do so by estimating the probability of

belonging to a health type conditional on observable characteristics at age 52 using a multi-

nomial logit model. The explanatory variables include demographic variables (education,

race, gender, HRS cohort, marital status, and household total income), health-related be-

23



Table 4: Health type and observable characteristics

All sample Type 1 Type 2 Type 3 Type 4 Type 5

Fraction of people 1 0.57 0.27 0.03 0.10 0.03

Health outcomes during clustering period

Average frailty 0.17 0.06 0.20 0.44 0.44 0.77
Average health deficit 5.85 2.09 6.93 15.31 15.31 27.12
Fraction dead by 60 0.05 0 0 0.94 0 0.91

Health at 52

Average frailty 0.13 0.05 0.17 0.15 0.40 0.34
Average health deficit 4.50 1.80 5.90 5.30 14 12
Average SRHS 2.64 2.12 3.01 3.18 4.01 3.89
Std. Dev. of frailty 0.14 0.04 0.08 0.13 0.13 0.23

Demographics

Fraction women 0.63 0.59 0.69 0.57 0.74 0.54
Fraction black people 0.17 0.13 0.20 0.27 0.28 0.28
Mean years of education 13.01 13.60 12.42 12.60 11.56 12.36
Fraction partnered at 52 0.78 0.82 0.77 0.67 0.63 0.65
Mean individual income at 52 30, 580 38, 928 24, 200 17, 395 10, 478 10, 304
Mean household income at 52 56, 102 69, 818 45, 340 34, 185 22, 368 27, 852

Health behaviours

Fraction ever smoked 0.56 0.49 0.64 0.72 0.67 0.77
Fraction vigorous activity at 52 0.50 0.61 0.44 0.46 0.21 0.23

Health insurance status

Health insurance status
Private health insurance at 52 0.76 0.85 0.74 0.60 0.42 0.43
Public health insurance at 52 0.13 0.04 0.13 0.20 0.45 0.48
Medicaid 0.06 0.01 0.06 0.08 0.23 0.27
Medicare 0.05 0.01 0.06 0.12 0.25 0.26
Uninsured at 52 0.14 0.12 0.17 0.22 0.21 0.16

haviors (ever-smoked and vigorous activity indicators), health insurance status (public and

private health insurance indicators), and frailty at age 52. Table 5 reports the pseudo-R2 of

those models, which we take as our metric for predictive power.

Column 1 refers to a model comprising all observable characteristics but excludes initial

frailty at age 52. It has low predictive power (a pseudo-R2 of 0.131). This suggests that

although some relationships emerge in the data between health types and the observables

that we consider, these variables only explain a small fraction of the variation in health types.
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Column 2 reports results for a model that only includes initial frailty at age 52 and shows that

it has higher predictive power, with a pseudo-R2 of 0.430. Column 3 includes all observable

characteristics at age 52, including initial frailty, and shows that observable characteristics

have negligible explanatory power for health types once we include initial health (Column 3

and 2). These results support our clustering empirical strategy of clustering only based on

health histories and not other observables, as other observables only turn out to be weakly

related to health types.

Table 5: Multinomial logistic regression of health type on observable characteristics

Health types

(1) (2) (3)

Initial frailty x x
Demographics x x
Health behaviours x x
Health insurance x x

Pseudo-R2 0.131 0.43 0.448

Notes: See Appendix G for further details

We also investigate whether our health types, which are constructed from a health mea-

sure that weights each health deficit equally, are related to the composition of deficit preva-

lence at age 52. We do so by constructing frailty indexes for each deficit subgroup listed in

Table 1, estimating our multinomial logit model for health types including these six frailty

subcategories, and comparing its predictive performance with those from the multinomial

logit that only includes initial frailty at age 52. We find that using the frailty sub-indexes

has little effect on the predictive power for health types compared with the models that use

only frailty at 52. These findings suggest a high level of comorbidity among deficits: while

the composition of frailty varies across types, the equal-weighted index also varies, leaving

little role for additional predictive capability. We discuss this more in Appendix G.
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5 What health dynamics do we miss if we ignore health

types?

Health types are commonly overlooked when estimating health dynamics. What do we

miss by doing so?

To answer this question, we turn to what is commonly done in the extensive literature

of structural papers modeling health dynamics. That is, we model health as a variable that

can take a small number of states and is a Markov process of order one that also depends

on a number of observable characteristics, in addition to health during the previous period.

Then, we compare what happens in these models in their base case and if we include health

types as an additional explanatory variable.

More specifically, we take our previously computed health types based on frailty as given,

and use them to study the evolution of a different measure: Self-reported health status

(SRHS) and death starting from age 52 and until death or the end of our observation period.

Self-reported health status results from a question in which people are asked to self-report

their health as “excellent,” “very good,” “good,” “fair,” and “poor.” This measure has, at

this stage, some important advantages for us. It parsimoniously summarizes an individual’s

perception about their own health, it is not mechanically related to our frailty measure, and

it has also been shown to be a good predictor of many economic outcomes. Moreover, the

vast majority of structural models using health status adopts this health measure, which

allows us to make our exercise relevant for these studies.5

Let hi,t represent the health state of individual i at age t. The variable hi,t takes values in

the set H = {0, 1, 2, 3, 4, 5}, where 0 corresponds to “dead,” and 1 to 5 map to self-reported

health statuses: “poor,” “fair,” “good,” “very good,” and “excellent,” respectively. Let g

denote a generic health state, such that g ∈ H. We estimate the two-year health/mortality

5As Russo, McGee, De Nardi, Borella, and Abram (2024), we could instead set frailty thresholds to map
frailty to discrete states. However, efficient discretization implies taking a stand about the underlying process
for frailty, which we can avoid by using SRHS.
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transition probabilities by fitting the observed transitions to a multinomial logit model. We

allow the transition probabilities to depend on one’s current health, age, marital status,

education, and gender, and take into account that death is an absorbing state (i.e hi,t = 0 −→

hi,t+2 = 0).

Our assumptions gives the following expression for each probability

Pr(hi,t+2 = g | Xit) =
eXitβg∑5
n=1 e

Xitβn
(2)

Where Xit includes age, age squared, current self-reported health status dummies, couple

dummies, and education dummies, all interacted with a gender dummy, which translates into

gender-specific transition probabilities. This specification parallels state-of-the-art health

dynamics models in the literature (See for instance De Nardi, French, Jones, and McGee

(2024)) that use the same data set. Our sample includes all individuals to whom we assign

a health type from age 52 until death or 2018.

To incorporate health type heterogeneity, we estimate an augmented version of the

previous model that accounts for health transitions based on an individual’s health type.

Specifically, we extend the baseline model by including a vector of health type indicators,

Θi = [1η=1, 1η=2, 1η=3, 1η=4, 1η=5], in the multinomial logistic specification. The model speci-

fication is shown in Equation 3.

Pr(hi,t+2 = g | Xit,Θi) =
eXitβg+Θiγg∑5
n=1 e

Xitβn+Θiγn
(3)

Table 6 summarizes the main estimation results. The log-likelihood of the model with

health types is greater than that of the model without health types. A formal log-likelihood

ratio test indicates that these differences are statistically significant, suggesting that health

types are important determinants of health dynamics, even when we include past period

health and a rich set of observable characteristics. We also compare these models using

the Akaike information criterion and the Bayesian information criterion. Models with lower
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Table 6: Multinomial logistic regression for health dynamics

Future SRHS

Without health types Including health types

Log-likelihood -33454 -31932
Log-likelihood ratio test p-value - 0.00
Akaike information criterion 67108 64105
Bayesian information criterion 67938 65100
Pseudo-R2 0.257 0.291

Notes: See the text for a detailed description of the models.

values for these criteria are preferred. The results indicate that both criteria select the model

with health types as the better model. Finally, our results show that including health types

significantly increases the pseudo-R2 from 0.257 to 0.291.

But to what extent does ignoring health types lead to misrepresenting the observed

heterogeneity in health trajectories? To answer this question, we simulate the health and

mortality path from the multinomial model of health dynamics with and without health

types and using the initial distribution of health and its covariates at age 52.6 To under-

stand the implications of ignoring health types we focus on two important metrics from the

standpoint of many structural models: the fraction of individuals alive by age and the frac-

tion of individuals in good health (where “good” now includes good, very good, or excellent)

conditional on being alive by age. We also compare the models’ implied simulation with

their counterparts in the observed data.

Figure 4 and 5 report the results of the models without and with health types, respec-

tively. The left panel shows the fraction of individuals alive by health type and age, and

the right panel shows the fraction of individuals in good health, conditional on being alive.

Solid lines refer to the data and dashed line to models’ simulations.

The left panel of Figure 4 shows that the model without health types misses the tim-

ing and heterogeneity in mortality. That is, it fails to account for the significantly higher

mortality rates experienced by health types 3 and 5, and underestimates the magnitude in

6We sample the entire sequence of marital status for each individual.
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the difference in mortality of types 1, 2, and 4. For example, by age 70, the model implies

a mortality gap of about 11 percentage points (pp) between those of types 1 and 4, which

is significantly lower than the 38 percentage points (pp) observed gap. Similarly, the model

underestimates the mortality gap between health types 1 and 2, predicting a 4 pp difference,

while the data indicate that it is nearly 11 pp.

Figure 4: Health dynamics by health type and age. Model without health types
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Notes: Solid lines represent the data, while dashed lines depict the model’s simulations. Lines in blue,
orange, red, green, and purple correspond to health types 1, 2, 3, 4, and 5, respectively. The fraction in
good health for types 3 and 5 is plotted only up to age 60 due to reduced cell size. Model simulations are
adjusted accordingly.

The right panel of Figure 4 shows that the model without health types also misses

the persistence of good health among the living. Specifically, conditional on being alive,

it predicts fast mean reversion, forecasting improved health for individuals who initially

report poor health. It projects fast recoveries for health types 4 and 5, while in the data

these individuals remain in relatively poor health. Conversely, for individuals starting with

relatively good health (health type 1), the model forecasts a faster decline than observed in

the data. As a result, the model cannot explain the observed gap between the fractions of

people reporting good health by health type and age observed in the data. For example, the
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Figure 5: Health dynamics by health type and age. Model with health types
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Notes: Solid lines represent the data, while dashed lines depict the model’s simulations. Lines in blue,
orange, red, green, and purple correspond to health types 1, 2, 3, 4, and 5, respectively. The fraction in
good health for types 3 and 5 is plotted only up to age 60 due to reduced cell size. Model simulations are
adjusted accordingly.

model predicts that the share of people reporting good health in health type 1 will decline

from 0.94 at age 52 to 0.78 by age 70, significantly lower than the observed 0.84. Similarly,

for those in health type 2, it predicts the fraction reporting good health will increase from

0.71 at age 52 to 0.73 at age 70, significantly higher to the observed 0.66. Overall, the model

predicts that the initial 23 percentage points (pp) gap between health type 1 and 2 (0.94-

0.71) will reduce to 5 pp by age 70. However, the observed gap at age 70 remains at 19

pp (0.84- 0.66). Large discrepancies between data and model implications are also observed

among other health types as well. We do not plot health types 3 and 5 beyond age 60 due

to the small number of individuals remaining alive, which would result in noisy estimates.

Figure 5 refers to the model with health types and shows that it generates patterns of

mortality and good health by health type that are more consistent with the data. That is, it

captures the elevated mortality rates experienced by health types 3 and 5 and the mortality

disparities among health types 1, 2, and 4, both before and after age 60. Furthermore, the
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model’s simulations closely match the fraction of individuals in good health by health types

in the data. This alignment persists both during and after the clustering period. Particularly,

this version of the model does not predict mean reversion in the fraction of people in good

health but, rather, captures well the persistence of these individuals’ health states.

These results showcase the importance of health types for capturing the rich heterogene-

ity in health dynamics and their persistence that we observe in the data. Many economic

outcomes, such as labor supply and savings, are based on future health and mortality ex-

pectations. Individual choices may vary a lot depending on whether their projected future

health state evolves, as illustrated in Figure 4 or Figure 5.

5.1 Modeling health and mortality parsimoniously

The literature modeling health as an exogenous process typically allows health to be

a function of several important variables, which include age, gender, marital status, and

educational attainment (or permanent income). While estimating processes that take into

account this observed heterogeneity may sound appealing, this richness translates into a

rapid increase in the number of state variables. This, in turn, increases the computational

burden of solving these structural models.

We have so far shown that health types have important implications for health dynam-

ics. This raises the question of whether we can just focus on health types and avoid to

explicitly modeling other observable characteristics that the previous literature has spent

computational power on so far.

To answer this question, we evaluate how well a parsimonious model of health dynamics

that only includes age and health types performs against a model that include the observed

heterogeneity that the structural literature has used so far. Specifically, we compare the

baseline model without health types (Equation 2) and a simplified version of the model with

health types (Equation 3), whereXit only includes age, age squared, and current self-reported

health status dummies.
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Table 7 shows that the log-likelihood of the parsimonious model with health types is

greater than the one with demographics but without health types, and that those differences

are statistically significant. The Akaike information criterion and the Bayesian information

criterion also suggest that the simple model with health types dominates the full model that

ignores them. Finally, the pseudo-R2 of the simpler model with just age and health types is

also larger (0.285 against 0.257) that of the model with the rich set of observables.

These results suggest that a parsimonious model that includes health types captures

the heterogeneity in health outcomes well, and covariates such as gender, education, and

marital status don’t need to be included. It is worth noticing that this does not imply that

those variables do not affect health dynamics earlier on in life; but rather, that their earlier

influence is already reflected in health types once people reach middle age.

Table 7: Multinomial logistic regression for health dynamics

Future SRHS

Without health types Including health types

Log-likelihood -33454 -32219
Log-likelihood ratio test p-value - 0.00
Akaike information criterion 67108 64547
Bayesian information criterion 67938 65003
Pseudo-R2 0.257 0.285

Notes: See the text for a detailed description of the models.

6 Conclusions and directions for future research

We use HRS data and k-means clustering to identify health types in middle age. We

identify five health types: the “vigorous resilient” (57% of our sample), the “fair-health

resilient,” (27%), the “fair-health vulnerable,” (3%), the “frail-resilient,” (10%), and the

“frail-vulnerable,” (3%). Thus, 6% of our individuals experience very fast health deteriora-

tion during middle and older ages. We also show that observable characteristics earlier in

middle age have little explanatory power for health types and that using health trajectories is
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key to identifying health types. Our findings offer valuable insights and highlight promising

avenues for future research. First, health types are crucial for understanding health inequal-

ity and its potential role in driving economic inequality. Second, ignoring health types can

lead to misleading policy implications regarding both observed outcomes and welfare.

Several important questions we leave unadressed. How much historical information is

needed to identify health types? This is relevant both operationally and for understanding

how long it takes individuals to learn their health type based on family background and

personal health history. At what point do individuals become aware of their health type?

To what extent do decisions related to retirement, savings, and labor supply depend on

health types? Another open question is how health types manifest earlier in life and how

they connect to key economic outcomes such as education, marriage, fertility, disability,

working life duration, retirement, and medical expenses. Finally, when and how are health

types formed? Addressing these critical issues requires substantial further research.

Finally, we identify health types in adulthood and model them as exogenous ex-ante

unobserved heterogeneity. However, a health type formation period exists during which

individuals invest in their health, possibly well before adulthood. Understanding the factors

contributing to health type formation and its timing offers significant potential for future

research.
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Appendix

A Data, the HRS

The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging

(grant number NIA U01AG009740) and is conducted by the University of Michigan. The

HRS data includes eight cohorts which enter the sample in various years. Figure 6 showcases

the HRS sampling structure.

Figure 6: HRS sampling scheme

Notes: This graphic illustrates the longitudinal cohort design of the HRS. The initial 1992 HRS cohort
included individuals born 1931–1941 (aged 51–61) and their spouses of any age, followed biennially since
1992. Additional cohorts were added over time: AHEAD in 1993 (born before 1924, aged 70+), CODA
(1924–1930) and War Babies (1942–1947) in 1998, Early Baby Boomers (1948–1953) in 2004, Mid Baby
Boomers (1954–1959) in 2010, Late Baby Boomers (1960–1965) in 2016, and Early Generation X (1966–1971)
in 2022. HRS replenishes the sample every six years, always including both members of couples.
Source: HRS Survey Design and Methodology: Longitudinal Cohort Sample Design. Available at
https://hrs.isr.umich.edu/documentation/survey-design. Accessed: April 10, 2024.

We use the RAND HRS files and the exit files and restrict our analysis to the years 1996

to 2018. The exit files contain information collected in the wave following an individual’s
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Table 8: Number of individuals each step approaching the sample used for clustering.

Step Number of individuals

Full sample 46852
Alive and observed at age 52-53 20395
Observed at age 60-61 or older by 2018 12390
Constructible frailty index during clustering 4663

death. Because our data is biennial, we group ages into two-year bins, which means that,

for example, people age 52 and 53 are in the same bin. This solves the problem that, due to

the biennial nature of the data, we never observe some individuals at even ages and others

at odd ages.

There are 46,852 individuals in the main data set. We impose the following screens to

ensure that we have enough interviews for each respondent to identity their health type

during our clustering period and to validate it after our clustering periods ends.

We start by imposing that, for an individual to be included in our sample, he or she is

alive and observed at age 52-53. Hence, we exclude those who enter the HRS study at age

54 or older and include those who enter the sample at younger ages but that we observe at

52-53. This yields a total of 20,395 individuals. Additionally, we require that individuals

are 60-61 or older by 2018. Individuals who die before age 60-61, are included as long as

their potential age (e.g age if alive) satisfies our criteria. Our restrictions shrink the sample

to 12,390 individuals. We also restrict our sample to those for whom we can construct our

health measure for all observations during the clustering periods (ages 52-53 to 60-61). This

leaves us with 4,663 individuals. Table 8 reports the number of individuals at each stage of

our sample selection.

To validate our health types in terms of mortality and frailty predictions after age 60 (see

Appendix D), we use the 4,663 individuals to whom we can assign a health type and perform

further screenings. First, we need those who are alive by the end of the clustering periods,

which includes 4,415 individuals. Second, to evaluate predictive power of our health types

on mortality after age 60, we require individuals who have at least one health realization
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(including death) after age 60-61, resulting in 3,346 individuals. Third, since our regressions

models include several co-variates (e.g., marital status, race, education, among others), we

can only use individuals for whom this information is non-missing, resulting in 3,340 individ-

uals and 12,890 observations. Finally, to evaluate the predictive power of our health types

on frailty after age 60, we can only use information for individuals who are alive. This last

selection yields 3,279 individuals and 11,964 observations. Table 9 summarizes this selection

process.

Table 9: Number of individuals each step approaching the sample used for predictive exercise

Step Number of individuals N of observations

Assigned a health type 4663
Alive at 60-61 4415
At least one health realization after age 60-61 3346
Non-missing information 3340 12890
Non-missing information and alive 3279 11964

B Frailty distribution and cause of death

Table 10 report the number of deficits and the distribution of frailty while alive for all

observations in our sample. This sample includes the 4,663 individuals (from age 52 until

they die or 2018) and 34,734 observations.

About 6 percent of cases have a frailty of 0 (i.g., no health deficit) and the median frailty

is 0.11, which correspond to 4 health deficits. Moreover, in 98% of the cases alive individuals

experience a frailty that is lower than 0.6, which corresponds to 21 health deficits.

Table 11 reports the major illness that lead to death as reported by the HRS exit interview

respondent. We group them into 4 categories7 and show their distribution conditional on

7There are 13 categories in the HRS Exit interview files: 1) Cancers and tumors; skin conditions, 2)
Musculoskeletal system and connective tissue, 3) Heart, circulatory and blood conditions, 4) Allergies; hay
fever; sinusitis; tonsillitis, 5) Endocrine, metabolic and nutritional conditions, 6) Digestive system (stomach,
liver, gallbladder, kidney, bladder) 7) Neurological and sensory conditions, 8) Reproductive system and
prostate conditions 9) Emotional and psychological conditions, 10) Miscellaneous, 11) Other symptoms, 12)
Not a health condition, and 13) Other health condition.
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dying either during the clustering period or by 2018. Of these 4,663 individuals, 600 die by

2018. We have a known cause of death for 526 of them (88%). The data show that most

deaths are due to health-related causes and that cancer and heart conditions are leading

causes of death.

Table 10: Number of deficit and frailty distribution in our sample

Number of Deficits Average Frailty Freq. Percent. Cumul Percent.

0 0.00 2026 5.83 5.83
1 0.03 4771 13.74 19.57
2 0.06 4953 14.26 33.83
3 0.09 4050 11.66 45.49
4 0.11 3462 9.97 55.46
5 0.14 2792 8.04 63.49
6 0.17 2088 6.01 69.51
7 0.20 1691 4.87 74.37
8 0.23 1321 3.80 78.18
9 0.26 1265 3.64 81.82
10 0.29 1020 2.94 84.76
11 0.31 839 2.42 87.17
12 0.34 635 1.83 89.00
13 0.37 664 1.91 90.91
14 0.40 569 1.64 92.55
15 0.43 481 1.38 93.93
16 0.46 418 1.20 95.14
17 0.49 328 0.94 96.08
18 0.51 254 0.73 96.81
19 0.54 209 0.60 97.41
20 0.57 183 0.53 97.94
21 0.60 180 0.52 98.46
22 0.63 147 0.42 98.88
23 0.66 120 0.35 99.23
24 0.69 69 0.20 99.43
25 0.71 55 0.16 99.59
26 0.74 34 0.10 99.68
27 0.77 38 0.11 99.79
28 0.80 33 0.10 99.89
29 0.83 17 0.05 99.94
30 0.86 15 0.04 99.98
31 0.89 6 0.02 100.00
32 0.91 1 0.00 100.00
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Table 11: Death cause

Fraction Cancer / Heart, circ. Other Non-health
dead tumors and blood conditions health related related

Dead during clustering period 5.3% 34.1% 25.6% 33.2% 7.2%
Dead by 2018 12.9% 34.8% 26.0% 34.8% 4.4%

Notes: Other health related include musculoskeletal system and connective tissue, allergies; hay fever; sinusi-
tis; tonsillitis, endocrine, metabolic and nutritional conditions, digestive system (stomach, liver, gallbladder,
kidney, bladder), neurological and sensory conditions, reproductive system and prostate conditions, emo-
tional and psychological conditions, miscellaneous, other symptoms, and other health conditions.

C Choosing the number of clusters or health types

We select our number of clusters, or health types, based on an economic criterion and

traditional machine learning criteria. The economic criterion is that adding health types no

longer increases their predictive power for future frailty and mortality during the clustering

period.

To evaluate the predictive power of health types on frailty, we use the following linear

regression model:

fi,t = Xitβ +Θi(k̄)γ + ϵi,t (4)

where Xit includes age, age squared, age cubed, education dummies, race dummies, gender

dummies, HRS cohort dummies, and marital status dummies. Θi(k̄) is a vector of health

type indicators when k̄ clusters are considered:

Θi(k̄) =
[
1i,η=1, 1i,η=2, . . . , 1i,η=k̄

]
To evaluate the predictive power of health types on mortality, we use a logit model for

the probability of dying at age t. Let Di,t be a binary variable equal to 1 if individual i is

dead at age t, and 0 otherwise. The logit model is specified as:

Pr(Di,t = 1|Xit,Θi(k̄)) =
eXitβ+Θi(k̄)γ

1 + eXitβ+Θi(k̄)γ
(5)
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The predictive power of a model with k̄-clusters is defined as

P (k̄) = 1− a(k̄)

a(1)
,

where a(k̄) is the mean absolute error for a model with k̄-health types, and a(1) is the mean

absolute error for a model without health types.

We perform both regressions and predictions during the age range used to cluster health

types. To estimate P (k̄), we use 10-fold cross-validation as follows. We split the 4,663 indi-

viduals into 10 roughly equal-sized subsamples. For each subsample, we split the data into

that subsample and its complement and name them the test and training sample, respec-

tively. We run k-means clustering with k̄ clusters on the training sample, recovering indi-

viduals’ health type. We then run regression 4 and 5 on the training sample, and store the

estimated coefficients. Using the centroids established by running k-means on the training

sample, we assign each individual in the test sample to the cluster with the nearest centroid,

and use the stored coefficients to predict frailty and mortality in the test sample. Finally we

calculate P̂n(k) = 1 − ân(k)
ân(1)

, where ân(1) and ân(k) are calculated using the predictions on

the n test sample. That is, for each test sample, we construct an estimate of the predictive

power of k̄-health types for frailty and mortality. Finally, we estimate the predictive power

of k̄-health types by taking the average across them, that is: P̂ (k̄) =
∑10

n=1 P̂n(k̄)

10
.

Figure 7 displays the predictive power of health types as a function of the number of

health types, k̄. These results suggest that, for frailty, the gain from moving from 3 to

4 clusters is substantial, and that the gain of having more than 6 clusters is very small.

Because a clear elbow is present at 5 clusters for predictions of mortality, we consider the

gain associated with moving from 4 to 5 clusters to be substantial, and proceed with 5

clusters.

We also explore model specifications in which we include fi,52 and si,52, that is one’s
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Figure 7: The predictive power of health types as a function of the number of health types
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(b) Mortality

Notes: Dark shaded areas indicate zones with the highest increase in predictive power, while light shaded
areas represent zones with smaller increases in predictive power.

frailty and self-reported health8 at age 52, as follows

fi,t = Xitβ +Θi(k̄)γ + βssi,52 + βffi,52 + ϵi,t. (6)

Pr(Di,t = 1|Xit,Θi(k̄), si,52, fi,52) =
eXitβ+Θi(k̄)γ+βssi,52+βffi,52

1 + eXitβ+Θi(k̄)γ+βssi,52+βffi,52
(7)

These results (see Figure 8) suggest that health types have significant predictive power for

future frailty and mortality, even after controlling for frailty and self-reported health at age

52.

Finally, we adopt two conventional machine learning criteria to evaluate how many clus-

ters we should use. They are the silhouette and elbow methods. The silhouette of a cluster

(see Rousseeuw (1987)) is a measure that increases with the average distance between clus-

8HRS respondents are asked to rate their health as excellent, very good, good, fair, and poor health,
which are used to compute the SRHS by assigning numerical values (from 5 to 1) to each of the health
states. The SRHS has been shown to be associated with key health and economic outcomes, including labor
earnings and mortality (De Nardi et al. (2023)).
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Figure 8: The predictive power of health types as a function of the number of health types,
when including one’s frailty and self-reported health at age 52
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Notes: Dark shaded areas indicate zones with the highest increase in predictive power, while light shaded
areas represent zones with smaller increases in predictive power.

ters and decreases with variance within clusters. More formally, given some point i, letting

i ∈ CI for some cluster CI , define:

a(i) =
1

|CI | − 1

∑
j∈CI ,j ̸=i

d(i, j)

b(i) = min
J ̸=I

1

|CJ |
∑
j∈CJ

d(i, j)

Where | · | gives set size and d is the Euclidean distance, so that a(i) is the mean distance

between i and other points within the same cluster and b(i) is the mean distance between i

and the points in the nearest cluster. Then the silhouette at point i is given by:

s(i) =

 0 |CI | = 1

b(i)−a(i)
max{a(i),b(i)} otherwise

The silhouette criterion states that we should select the number of clusters that maximizes
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the average silhouette of the clustering.

The elbow method (see Thorndike (1953)) involves plotting within cluster variance against

the number of clusters, and selecting a number of clusters such that within-cluster variance

decreases very little past that point. This will appear as an “elbow” in the graph. An inver-

sion of this plot, which will give the same optimal number of clusters, uses the proportion

of variance explained by the clusters rather than within-cluster variance.

Figure 9: Clustering frailty trajectories: Average silhouette against the number of clusters on
the left-head-side and proportion of total variance explained by clusters against the number
of clusters on the right-hand-side.
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Notes: Silhouette analysis: Black dashed line represents the maximum average silhouette at 2 health types.
Elbow analysis: Dark shaded areas indicate zones where an ”elbow” appears, suggesting a potential number
of health types.

The graph on the left-hand-side of Figure 9 displays the silhouette of clustering frailty

trajectories by the number of clusters, while its left-hand-side displays the results for the

Elbow method. The silhouette method suggests two clusters and the elbow method suggests a

range of 2 to 5 clusters. Therefore, selecting 5 clusters is consistent with the recommendations

of these criteria.
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D Validating health types: Out-of-sample forecasting

exercise

In this section, we explain how we conduct our out-of-sample forecast exercise for frailty

and mortality after age 60. To evaluate the predictive power of health types for future

frailty, we only include observations for those who are still alive at age 60 and for the periods

during which individuals are alive and have non-missing information. We run the following

specifications

fi,t = Xitβ +Θi(5)γ + ϵi,t, (8)

fi,t = Xitβ +Θi(5)γ + βssi,52 + βffi,52 + ϵi,t. (9)

Where Xit includes, age, age squared, third degree polynomial in age, education dummies,

race dummies, gender dummies, HRS cohort dummies, and marital status dummies. The

term Θi(5) represents a vector of health type indicators derived from our clustering exercise,

based on five health types. Additionally fi,52 and si,52 represent one’s frailty and self-reported

health score at age 52, respectively.

To evaluate the predictive power of health types for future mortality, we include in our

sample observations for those who are still alive at age 60, we keep those who die after

that age (and until 2018), and we flag them as dead until 2018.9 This procedure provides a

better sense of the effects of time-invariant factors like health types and first period frailty

on how long one lives. We model the probability of dying at age t as the following logistic

regressions:

Pr(Di,t = 1|Xit,Θi(5)) =
eXitβ+Θi(5)γ

1 + eXitβ+Θi(5)γ
, (10)

Pr(Di,t = 1|Xit,Θi(5), si,52, fi,52) =
eXitβΘi(5)γ+βssi,52+βffi,52

1 + eXitβΘi(5)γ+βssi,52+βffi,52
. (11)

Table 12 reports the results for these regressions. The first column refers to Equation

9We also fill in Xit using the last information available for the individual in case of death.
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8. Our excluded education category is not degree. Thus, higher education is associated

with lower frailty compared to those with no degree, and those with a bachelor’s or master’s

degree have the lowest frailty. Black people have, on average, a frailty index 0.04 higher than

white people, corresponding to 1-2 additional health deficits. Women have a slightly higher

frailty index than men. Married individuals have a frailty index 0.046 lower than single

individuals, corresponding to 1-2 fewer health deficits. The R2 on this restricted regression

is 0.120, and thus suggests that demographics explain little of the variation in future frailty.

The second column of Table 12 reports the results for Equation 8. All health types have

significantly higher frailty after age 60 than type 1, on average. The inclusion of health

types increases the R2 of the regression from 0.120 to 0.571, which implies that health types

explain the majority of variation in health not explained by demographics.

The third column of Table 12 reports the results for Equation 9 when the coefficients

of health types are restricted to be zero. Future frailty increases in both initial frailty and

self-reported health. The R2 of the regression is 0.510, lower than the R2 associated with the

regression including health types. This is noteworthy because frailty is nearly continuous,

while health types are discrete and take on only 5 values.

The final column of Table 12 shows the estimated coefficients for Equation 9. All health

types have significantly higher frailty than Type 1, and higher first period frailty and self-

reported health are associated with higher future frailty. The R2 of this regression is 0.591.

Thus, health types explain a large amount of variation in future frailty. Health type,

frailty, and self-reported health in the first period all have an independent influence on future

frailty. Both health types and first period frailty and self-reported health explain much more

variation in future frailty than demographics. Health types explain more variation in future

frailty than initial frailty and self-reported health.

Table 13 displays the estimates for the logistic regression models for mortality. We use

the McFadden pseudo-R2 as measure of goodness of fit (see McFadden (1975)).

The first column of Table 13 reports the results for regression of mortality on demograph-
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Table 12: Regressions of future health on demographics, health type, and initial frailty and
self-reported health.

Dependent variable:

frailty bl

(1) (2) (3) (4)

age 0.113 −0.070 −0.067 −0.096
(0.389) (0.271) (0.291) (0.266)

age2/100 −0.172 0.089 0.095 0.130
(0.576) (0.402) (0.431) (0.393)

age3/10000 0.090 −0.032 −0.040 −0.053
(0.284) (0.198) (0.212) (0.194)

GED 0.007 −0.009∗ 0.004 −0.004
(0.008) (0.005) (0.006) (0.005)

HS −0.050∗∗∗ −0.007∗∗ 0.003 0.002
(0.004) (0.003) (0.003) (0.003)

HS/GED −0.063∗∗∗ −0.009∗∗∗ −0.003 0.001
(0.005) (0.003) (0.004) (0.003)

Associate’s −0.056∗∗∗ −0.001 −0.001 0.006
(0.007) (0.005) (0.005) (0.005)

Bachelor’s −0.107∗∗∗ −0.028∗∗∗ −0.021∗∗∗ −0.014∗∗∗

(0.005) (0.004) (0.004) (0.004)
Master’s −0.116∗∗∗ −0.026∗∗∗ −0.020∗∗∗ −0.011∗∗∗

(0.006) (0.004) (0.004) (0.004)
Doctorate −0.112∗∗∗ −0.037∗∗∗ −0.026∗∗∗ −0.021∗∗∗

(0.009) (0.006) (0.007) (0.006)
Black 0.040∗∗∗ 0.024∗∗∗ 0.017∗∗∗ 0.020∗∗∗

(0.004) (0.003) (0.003) (0.003)
Other Non-White 0.015∗∗∗ 0.011∗∗∗ 0.007 0.007∗

(0.006) (0.004) (0.004) (0.004)
Woman 0.013∗∗∗ −0.002 0.003 −0.001

(0.003) (0.002) (0.002) (0.002)
Cohort 5 0.004 −0.002 −0.002 −0.003

(0.009) (0.006) (0.007) (0.006)
Married −0.046∗∗∗ −0.010∗∗∗ −0.012∗∗∗ −0.008∗∗∗

(0.003) (0.002) (0.002) (0.002)
Type 2 0.150∗∗∗ 0.111∗∗∗

(0.002) (0.003)
Type 3 0.536∗∗∗ 0.522∗∗∗

(0.041) (0.040)
Type 4 0.358∗∗∗ 0.250∗∗∗

(0.004) (0.006)
Type 5 0.645∗∗∗ 0.432∗∗∗

(0.027) (0.028)
f0 0.794∗∗∗ 0.273∗∗∗

(0.011) (0.015)
s0 0.016∗∗∗ 0.011∗∗∗

(0.001) (0.001)
Constant −2.325 1.783 1.521 2.273

(8.740) (6.103) (6.539) (5.974)

Observations 11,964 11,964 11,875 11,875
R2 0.120 0.571 0.510 0.591
Adjusted R2 0.119 0.571 0.510 0.591

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 13: Regressions of future mortality on demographics, health type, and initial frailty
and self-reported health.

Dependent variable:

Dead

(1) (2) (3) (4)

age 30.090∗∗∗ 29.073∗∗∗ 31.186∗∗∗ 29.905∗∗∗

(10.740) (11.068) (10.929) (11.103)
age2/100 −42.449∗∗∗ −40.918∗∗ −44.006∗∗∗ −42.115∗∗∗

(15.603) (16.080) (15.878) (16.131)
age3/10000 20.088∗∗∗ 19.339∗∗ 20.836∗∗∗ 19.914∗∗

(7.545) (7.777) (7.679) (7.801)
GED 0.649∗∗∗ 0.549∗∗∗ 0.739∗∗∗ 0.631∗∗∗

(0.155) (0.163) (0.161) (0.165)
HS −0.171 0.112 0.175 0.162

(0.104) (0.110) (0.109) (0.111)
HS/GED −0.163 0.133 0.200∗ 0.197

(0.112) (0.119) (0.119) (0.122)
Associate’s 0.103 0.445∗∗∗ 0.476∗∗∗ 0.530∗∗∗

(0.163) (0.170) (0.169) (0.171)
Bachelor’s −0.767∗∗∗ −0.259∗ −0.211 −0.152

(0.150) (0.157) (0.157) (0.159)
Master’s −1.335∗∗∗ −0.715∗∗∗ −0.728∗∗∗ −0.603∗∗

(0.226) (0.232) (0.233) (0.234)
Doctorate −1.501∗∗∗ −1.288∗∗∗ −1.098∗∗∗ −1.239∗∗∗

(0.397) (0.437) (0.410) (0.440)
Black 0.403∗∗∗ 0.265∗∗∗ 0.290∗∗∗ 0.246∗∗

(0.094) (0.099) (0.096) (0.099)
Other Non-White 0.238 0.136 0.159 0.104

(0.153) (0.160) (0.157) (0.160)
Woman −0.437∗∗∗ −0.600∗∗∗ −0.523∗∗∗ −0.587∗∗∗

(0.078) (0.081) (0.080) (0.082)
Cohort 5 0.851∗∗ 0.795∗∗ 0.781∗∗ 0.755∗∗

(0.360) (0.370) (0.365) (0.372)
Married −0.573∗∗∗ −0.353∗∗∗ −0.395∗∗∗ −0.359∗∗∗

(0.076) (0.080) (0.079) (0.080)
Type 2 0.914∗∗∗ 0.886∗∗∗

(0.086) (0.100)
Type 3 4.663∗∗∗ 4.553∗∗∗

(0.535) (0.540)
Type 4 1.897∗∗∗ 1.890∗∗∗

(0.110) (0.185)
Type 5 3.960∗∗∗ 4.201∗∗∗

(0.449) (0.531)
f0 2.736∗∗∗ −1.041∗∗

(0.320) (0.493)
s0 0.254∗∗∗ 0.205∗∗∗

(0.043) (0.045)
Constant −716.041∗∗∗ −694.893∗∗∗ −743.405∗∗∗ −714.596∗∗∗

(246.096) (253.578) (250.401) (254.391)

Pseudo-R2 0.145 0.206 0.183 0.21
Observations 12,890 12,890 12,797 12,797
Log Likelihood −2,848.792 −2,643.110 −2,707.151 −2,618.481

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

A-13



ics only. People with a GED are more likely to die than people with no degree. People with

bachelors, masters, and doctoral degrees are the least likely to die in a given period. Black

people are more likely than white people to die earlier, and women are less likely than men

to die earlier. The pseudo-R2 of this regression is 0.145.

The second column of Table 13 refers to Equation 10. All health types are significantly

more likely to die than type 1, and type 4 is the most likely to die. The pseudo-R2 of this

regression increases to 0.206.

The third column of Table 13 displays results for Equation 11 and restricts the coefficient

of health types to be zero. An increase in either first period frailty or self-reported health

significantly increases the likelihood of dying in a given period. The pseudo-R2 of this

regression is 0.183. Hence, health types explain more mortality variation than first period

frailty and self-reported health.

The final column of Table 13 pertains to Equation 11. All health types are associated

with a higher likelihood of dying than individuals of type 1. There is a significant negative

relationship between first period frailty and mortality, but individuals with higher first period

self-reported health are more likely to die earlier. The pseudo-R2 of this regression is 0.210,

which is not much higher than that for the regression including only health types.

Hence, health types explain more variation in mortality than first period frailty and

self-reported health.

More generally, demographic characteristics explain very little of the variation in both

future health and mortality. Both health types and frailty and self-reported health at age

52 have more explanatory power for both future health and mortality. Health types explain

more variation in both frailty and mortality than first period frailty and self-reported health.

D.1 Sensitivity to the number of health types

We have first shown that five health types help predict health dynamics during our

clustering period. We have then validated our health types by showing that they have
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predictive power for frailty and mortality after our clustering period.

As an additional way to validate the choice of our number of types, we now turn to

examining how the results from the latter exercise change if we use a different number of

health types. Figure 10 depicts the R2 of the regressions in Equations 8 (left) and 9 (right),

when the number of health types k̄, ranges from 1 (no heterogeneity in health types) to 10.

The red vertical dotted line indicates our benchmark number of health types. We observe

a clear increase in predictive power when moving from no health type heterogeneity to five

health types, with the predictive power remaining quite flat beyond five health types. This

strongly supports five health types as the maximum number needed. However, we also find

that four health types perform as well as five in the out-of-sample exercise. This result holds

for models including initial health information.

Figure 11 shows the pseudo-R2 for the logistic regression of the probability of dying,

represented by Equations 10 (left) and 11 (right). The patterns are similar. The predictive

power of health types increases from no health type heterogeneity to five health types, then

remains flat. As in the previous exercise, four health types perform as well as five in the

out-of-sample exercise.

Figure 10: Adjusted R2 for regressions of frailty after age 60 by number of health type
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Notes: The dotted line is our benchmark number of health types
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Figure 11: McFadden pseudo-R2 for the probability of dying after age 60 by number of
health type
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Notes: The dotted line is our benchmark number of health types

E How do health types look with four and six clusters?

Figures 12 and 13 report the analogous pictures of Figure 2 in the main text when we

choose 4 and 6 health types, respectively, instead of 5. They highlight there is remarkable

consistency in the behavior of health types when the number of types increases or decreases

around our chosen number of types. While most health types display similar dynamics to

those in our base case, a second vulnerable (that is with high health deterioration) type

emerges when moving from 4 to 5 types, and an additional resilient (that is with slow health

deterioration) type, yet with poorer health, appears when going from 5 to 6 health types.

This consistency is not something that the k-means method imposes as we change the number

of types, yet it emerges from the data very clearly.
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Figure 12: Health dynamics by health type and age for 4 health types
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F How do health types look with a longer clustering

period?

Figures 14 and 15 report the analogous pictures of Figure 2 in the main text when

we increase the length of our clustering period to age 62 and 64, respectively, instead of 60.

They show that both the size of our types and their behaviour before and after the clustering
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Figure 13: Health dynamics by health type and age for 6 health types
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period are remarkably similar.
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Figure 14: Health dynamics by health type and age for types constructed using 6 periods
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G Health types and observable characteristics

We now turn to evaluating the extent to which observable characteristics at age 52 predict

health-type membership. Let ηi represent the health type membership of individual i. The

variable ηi takes values from the set ζ = {1, 2, 3, 4, 5}, where each value corresponds to one

of the five health types (1 to 5). We estimate this relationship using a multinomial logit

model, resulting in the following expression for each probability:
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Figure 15: Health dynamics by health type and age for types constructed using 7 periods
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Pr(ηi = j | Xit) =
eXitβj∑5
n=1 e

Xitβn
, (12)

where j ∈ ζ represents a specific health type, and the vector Xit includes Demographics :

education dummies, race dummies, gender dummies, HRS cohort dummies, marital status

dummies, and household total income, Health behaviors : Ever Smoked and vigorous activ-

ity dummies, and Health insurance: Private and public health insurance dummies. When
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explicitly mentioned, Xit also includes frailty at age 52. The term βj denotes the vector of

coefficients for health type j. The coefficient for health type 1, β1, is normalized to zero.

Column 1 of Table 14 reports the results when we allow health types to only depend

on initial frailty and shows that the pseudo-R2 from this specification is high. Column 3 of

the same table shows that adding a rich set of demographics, health behaviors, and health

insurance status to the previous specification only marginally improves the pseudo-R2. This

indicates that observables are not very helpful in explaining health types above and beyond

initial health.

Table 14: Multinomial logistic regression of health types on observable characteristics

Health types

(1) (2) (3) (4)

Initial frailty x x
Initial frailty composition x x
Demographics x x
Health behaviours x x
Health insurance x x

Pseudo-R2 0.43 0.45 0.448 0.468

G.1 Frailty composition and health types

What are we missing by weighting all health deficits equally in our frailty index? Table

15 shows the contribution of each deficit category to the total average number of deficits

by health type at age 52, where we split deficits into groups according to the classification

that we adopt for Table 1. It shows that there is substantial heterogeneity in the relative

contribution of deficits across health types. That is, the contribution of ADLs is low for

health type 1 and increases with frailty type. IADLs also depict displays a similar pattern

but its increasing prevalence by frailty type is less steep than for ADLs. Health care utilization

and other functional limitations have as a relatively constant contribution by health type.
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Diagnoses and addictive deficits showcase a decreasing relative contribution in frailty types.

Table 15: Deficits group prevalence at age 52: All sample and by health types

All Sample Type 1 Type 2 Type 3 Type 4 Type 5
Share Level Share Level Share Level Share Level Share Level Share Level

ADLs 10.00 0.44 1.00 0.02 6.00 0.34 8.00 0.42 18.00 2.56 19.00 2.35
IADLs 5.00 0.23 3.00 0.05 3.00 0.20 5.00 0.27 7.00 1.03 9.00 1.09
Other functional lim 37.00 1.69 24.00 0.43 41.00 2.41 36.00 1.91 43.00 6.03 36.00 4.31
Diagnoses 25.00 1.12 29.00 0.52 27.00 1.60 27.00 1.45 19.00 2.66 21.00 2.57
Health care utilization 3.00 0.15 4.00 0.06 3.00 0.18 4.00 0.22 3.00 0.42 5.00 0.57
Addictive 20.00 0.92 40.00 0.72 20.00 1.16 19.00 1.02 9.00 1.32 10.00 1.16
Deficits at 52 100.00 4.55 100.00 1.81 100.00 5.87 100.00 5.29 100.00 14.02 100.00 12.05

Notes: The left column (Share) shows the relative contribution of each deficit group to the average total
number of deficits. The right column (Level) shows the contribution of each deficit group to the average
total number of deficits.

Given this substantial heterogeneity in the composition of frailty by health types, we

now turn to examining to what extent one’s frailty composition in the initial period affects

one’s probability of belonging to a given health type. To do so, we include the composition

of frailty at age 52, in addition to the other observable characteristics that we have so far

analyzed, in our health types classification exercise.

More precisely, we construct frailty indexes for each deficit group listed in Table 1. For

example, using the eight deficits in the ADLs group (difficulty bathing, dressing, eating,

getting in/out of bed, using the toilet, walking across the room, walking one block, and

walking several blocks), we compute the number of reported ADLs and divide them by the

total number of possible ADLs, thus obtaining an ADL frailty index. We repeat this process

for the remaining five groups of deficits: IADLs, other functional limitations, diagnoses,

healthcare utilization, and addictive diseases. This procedure results in six frailty indexes

for each individual, thus providing information about individual deficit prevalence for each

deficit group.

Comparing Columns 1 and 2, and 3 and 4 in Table 14 reveals that the composition of

frailty does not add much explanatory power in terms of explaining which health type one

belongs to. The high heterogeneity in frailty composition across health types and its small
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effect in explaining health types’ membership come from the fact that there is a large degree

of co-mobility among deficits. This happens because of two important features of the data.

First, all health types are very heterogeneous both in their level of frailty and in their frailty

composition. Second, health types 2 and 3, and 4 and 5, are very similar in both their

average frailty structure and in the average number of deficits at 52.
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